Authigenic calcium carbonate flux in groundwater-controlled lakes:
Implications for lacustrine paleoclimate records

M. D. Shapley,1,* E. Ito,1 and J. J. Donovan2
1Limnological Research Center, Department of Geology and Geophysics, University of Minnesota,
310 Pillsbury Drive SE., Minneapolis, Minnesota 55455 USA
2Department of Geology and Geography, West Virginia University, 425 White Hall, Morgantown, West Virginia 26506 USA

(Received December 23, 2003; accepted in revised form December 9, 2004)

Abstract—Groundwater dominated lakes are an important feature of many landscapes. Their sediments are a particularly valuable source of paleoenvironmental information in semiarid regions where perennial lakes may otherwise be scarce. Where groundwater and lake composition are favorable, carbonate mineral precipitation, evaporative concentration of lake water, and microbial processes can combine to strongly deplete dissolved Ca relative to influent groundwaters. The authigenic carbonate flux (ACF) can then become limited by water column cation availability and thereby be coupled to groundwater inflow rates and aquifer recharge. Here we analyze sedimentary records from two marl-producing, groundwater-controlled lakes and demonstrate a link between one-dimensional ACF and the Palmer Drought Severity Index (PDSI), a measure of land surface wetness. In a restricted outflow lake with high-carbonate alkalinity, ACF is enhanced during historically wet climatic periods in response to increased aquifer recharge rates. ACF in this lake declines during droughts. A neighboring dilute lake with a high rate of groundwater outflow shows comparatively weak coupling between ACF and PDSI history. Ionic chemistry, carbonate mineral equilibria, and δ13C patterns of dissolved inorganic carbon show that the sensitivity of the ACF signal depends on the degree of evaporative evolution of lake water and the mineral saturation state of the water column under conditions of stratification and ice cover. Copyright © 2005 Elsevier Ltd

1. INTRODUCTION

Many investigations of continental paleoclimate employ indirect information, or proxies, preserved in chemically or biogenically precipitated lacustrine carbonate sediments. Such proxies have the potential to quantitatively record paleolake water isotopic and solute composition, both of which are closely linked to the changing hydrologic status of the surrounding watershed (McKenzie and Hollander, 1993; Benson et al., 1996; Ito, 2001; Last, 2001). In semiarid landscapes, fluid and solute balances of perennial lakes frequently have a strong groundwater component. Such “groundwater effects” are often viewed as a source of unwanted complexity in lacustrine paleorecords. Where paleorecord interpretations explicitly consider groundwater dynamics, however, the results can clarify questions both of environmental change and hydrologic process (Teller and Last, 1990; Sanford and Wood, 1991; Rogers and Dreiss, 1995; Smith et al., 1997; Donovan et al., 2002). New evaluations of the manner in which groundwater processes are reflected in paleorecords are therefore of interest. Here we examine late Holocene paleorecords from two lakes in which authigenic carbonate production may be supported and limited by groundwater exchange. We attempt to quantitatively relate authigenic mineral flux to groundwater supply rate and, thereby, to climate.

2. HYPOTHESES AND PURPOSE

Groundwater-dominated lakes receive solutes primarily from groundwater inflow. Calcium ± magnesium may react with dissolved inorganic carbon (DIC) to precipitate as authigenic carbonate minerals such as calcite, aragonite, and dolomite (Dean, 1981; Last, 1982; Muccio and Morse, 1983; Donovan, 1992). At high lake alkalinity and pH, carbonate mineral phases may precipitate to the point of solute limitation of the cation and may strongly deplete lake Ca activities relative to inflowing groundwater (Eugster and Hardie, 1978; Eugster and Jones, 1979; Sanford and Wood, 1991; Donovan, 1992). Under such Ca-limited conditions, we hypothesize that mass rates of CaCO3 formation should be quantitatively linked to locally prevailing rates of groundwater and Ca inflow, provided there are no other important sinks for Ca in the lake ecosystem or sediment.

Groundwater fluxes and lake-aquifer fluid exchanges are strongly controlled by climate, and in particular, groundwater recharge is sensitive to rates and seasonality of meteoric precipitation (Winter, 1983; Sophocleous and Perry, 1985; Winter, 1999). We therefore propose that the mass rate of limnic CaCO3 formation, or authigenic carbonate flux (ACF), is linked to climate and is a plausible paleorecharge metric in geochronically appropriate lakes. If so, ACF should increase during climatically wet periods when aquifer recharge is enhanced as suggested by Teller and Last (1990). Anomalies in recent ACF should then be correlative with historical records of climate that reflect recharge availability. ACF enhanced by groundwater recharge in this way should contrast with that predicted where
carbonate mineral production is controlled primarily by lake evaporation or phytoproductivity.

Several factors may complicate the interpretation of lake sediment records in terms of groundwater fluxes and ACF. Detrital sediment can provide an additional carbonate mineral flux which, if significant, could mask the ACF signal. Sediment focusing and other depositional factors make integration of sediment masses over a lake basin difficult. Heterogeneity in groundwater composition makes source-water chemistry difficult to characterize. Notwithstanding these complications, we propose that ACF may provide a valuable paleohydrologic tool when applied in appropriate settings.

Here, we test this hypothesis against 20th century sediment geochemistry and climatic records from a lake district in the Northern Rocky Mountains of Montana, United States. Using carefully dated sediment sequences from two geochemically contrasting lakes responding to similar climate forcing, we demonstrate the potential utility, data requirements, and limitations of ACF as a paleohydrologic tool.

3. RESEARCH SETTING AND METHODS

3.1. Regional Geologic Setting

The Ovando Valley is a structural basin of the Northern Rocky Mountains underlain by a complex of Late Wisconsinan glacial and

Fig. 1. Lake setting and sampling locations, Ovando, Montana, United States.
glacifluvial sediments. Three coalescing piedmont ice lobes occupied portions of the valley during the late Glacial. Final wasting of these ice masses left a landscape of poorly integrated basins, steep moraines, and knobs distributed across the valley floor (Dea, 1981; Fig. 1). Relatively thin (<50 m) Quaternary sediments are underlain by thick clastic sequences of mid-Tertiary age (Tuck et al., 1996). Metasedimentary rocks of the Proterozoic Belt Supergroup are exposed in the surrounding uplands and floor the basin.

3.2. Regional Hydrologic Setting

Quantitative analyses of groundwater flow within the Ovando Valley are lacking, but inferences can be drawn from regional evaluations (e.g., Tuck et al., 1996) and from our field observations. Water supply wells encounter aquifers within Holocene alluvium, Quaternary-aged glacial deposits, and in the upper 100 m of Tertiary-aged sediments. Regionally, groundwater potentials are high around the valley margins and decline toward the valley center; areas of flowing wells along major streams (the Blackfoot River and the North Fork Blackfoot River) indicate upward potentiometric gradients and likely regional groundwater discharge in low-elevation areas. Locally, lakes occur within areas of poorly integrated drainage and steep slopes. We infer this topography superimposes complex local flow systems on the regional groundwater flow pattern.

Based on evaluations of limnologic and geochemical data, we selected two perennial lakes (Jones Lake and Evans Lake) for evaluation of the link between ACF and climatically controlled groundwater recharge. The two lakes are similar in surface area, volume, and topographic catchment and are exposed to similar evaporative forcing (Table 1). The lakes lack both surface water outflow and organized surface water inflow; neither displays geomorphic evidence of past wet-period spills.

At Jones Lake, elevated and topographically complex terrain to the west of the lake probably provides locally focused groundwater recharge contributing to observed lakeshore discharge. To the south, a well-drained outwash surface encourages enhanced recharge from water management activities discussed later. To the east and northeast, stream incision has formed an abrupt 10 m slope below the lake. Deep, coarse-flowered sedimentary rock fill and the valley may have affected local slope stability. Weekly water table fluctuation is observed in wells near the lakeshore, indicating high groundwater discharge rates near the lake margin. The 10 m slope below the lake is a prominent feature, with 40% of the lake's discharge occurring at this location.

Euro-American settlement in the latter 19th century brought changes to the Ovando Valley. Agricultural development in the late 20th century included the use of wells for irrigation of farmland, raising water levels by as much as 5 m. Enhanced groundwater influx driven by this artificial aquifer recharge has resulted in Jones Lake water levels exceeding those experienced previously.

3.3. Regional Climatic Setting

Archival climatic data for the community of Ovando, centrally located within the region of lakes, show the Ovando Valley experiences two seasonal precipitation maxima of similar amplitude (Fig. 2). A winter maximum reflects Pacific moisture transport and results in a seasonal snowpack that melts from the valley floor in March and April. Early summer precipitation is delivered through May and June thunderstorm activity coincident with the precipitation maxima of the northern Great Plains (Bryson and Hare, 1974; Mock and Bartlein, 1994). Mean annual precipitation for the period 1900 to 1975 was 43 cm, with 44% occurring during the typical months of snow accumulation (November–March). Time-averaged evaporation exceeds precipitation, consequently most small basins lack surface water outflow. Regionalized Penneman estimates of annual potential evaporation are near 82 cm for the Ovando Valley (MAPS, 2003). Of the calculated potential evaporation, 11% is attributed to the November to March period when ice cover normally precludes actual lake evaporation. Class A evaporation pan data collected 8 km northwest of Jones Lake during 1998 and 1999 show growing season totals of 99 and 84 cm (Cook, 2001), generally consistent with regionalized potential evaporation values.

3.4. Sampling and Analytical Methods

3.4.1. Sediment

In 1997, we collected ~1 m long sediment cores from profundal sites in both lakes using a manual polycarbonate piston corer. Cores were extruded in 2 cm increments on-site and stored in watertight sample cups. Subsampling for water content and 210Pb analysis occurred within 20 days of sample collection. Lead-210 was measured through its granddaughter product 210Po, with added 209Po used as an internal yield tracer. Unsupported 210Pb activity was calculated by subtracting supported activity from total activity, with supported activity estimated from the asymptotic activity at depth in the core. Lead-210 measurements were reduced according to a constant rate of supply (CRS) model (Appley and Oldfield, 1978) to generate depth-age and sediment mass flux curves for the two sites. Confidence intervals on 210Pb ages were calculated by first-order error analysis of counting uncertainty (Binford, 1990).

The CRS model assumes that the flux of unsupported 210Pb to the sediment surface is constant, while the initial concentration of 210Pb varies with changes in total sedimentation rate. The CRS model provides a reliable basis for interpreting 210Pb profiles in lakes where the watershed contribution of 210Pb is small and depositional hiatuses are absent (Appley, 2001). Here, the lack of stream inflow and small drainage basin to lake-area ratios indicate watershed 210Pb is unlikely

<table>
<thead>
<tr>
<th>Surface elevation, 8/2000</th>
<th>1279.9 m (MSL)</th>
<th>1248.3 m (MSL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface area, 8/2000</td>
<td>2.57 E5 m²</td>
<td>3.22 E5 m²</td>
</tr>
<tr>
<td>Maximum depth, 8/2000</td>
<td>7.7 m</td>
<td>12.5 m</td>
</tr>
<tr>
<td>Mean depth, 8/2000</td>
<td>2.37 m</td>
<td>2.46 m</td>
</tr>
<tr>
<td>Volume, 8/2000</td>
<td>6.08 E5 m³</td>
<td>7.84 E5 m³</td>
</tr>
<tr>
<td>Dissolved solids range</td>
<td>186–277 mmol/l</td>
<td>2.48–6.68 mmol/l</td>
</tr>
<tr>
<td>Mg:Ca range</td>
<td>100–500</td>
<td>5.1–1.5</td>
</tr>
<tr>
<td>pH range</td>
<td>8.8–9.5</td>
<td>6.6–9.0</td>
</tr>
<tr>
<td>Hydraulic residence time</td>
<td>8–9 years</td>
<td>1.5–2 years</td>
</tr>
<tr>
<td>Dominant outflow</td>
<td>evaporation</td>
<td>groundwater</td>
</tr>
</tbody>
</table>

MSL: mean sea level

Fig. 2. Seasonal precipitation history for the Ovando climate station (National Climate Data Center station number 246302; period of record 1900 to 1975) and calculated monthly potential evaporation based on climatic data for the period 1940 to 1970 (MAPS, 2003).
to result in important errors. Sedimentology and local oral history indicate these lakes have been perennial during the period considered by our analysis.

Sediment subsamples for carbon and mineralogical analyses were split from the homogenized field samples and freeze-dried. Total inorganic carbon (TIC) and total carbon (TC) analyses were performed on a UIC, Inc. coulometric carbon analyzer. Total organic carbon (TOC) was calculated as the difference between TC and TIC. We performed replicate analyses on 15% of field samples; replication is generally within 2% of sample concentration. ACF was calculated as the product of TIC, the gross sediment flux determined from 210Pb, and the mass ratio of CaCO3 to C.

Determination of mineral concentrations were made by X-ray diffraction (XRD). Analyses were performed on a Phillips Model 1200 Diffractometer using Cu Kα radiation. Freeze-dried samples were ground in an agate mortar and mounted with random orientation into 2.4 cm epoxy disks. Mineral identification was done using automated peak search, and peak areas were quantified against standards for quartz, calcite, aragonite, dolomite, and chlorite. The XRD results for aragonite, calcite, and dolomite were indexed to the coulometric carbonate mineral fraction to improve precision. Smear slides of whole sediment from selected core intervals were prepared and examined for petrographic determination of sediment composition and textures.

3.4.2. Aqueous chemistry

Ovando-area waters were systematically sampled for geochemical composition from 1997 through 2002. In particular, sampling included seasonal water column profiling of Jones and Evans lakes and sampling of groundwater from wells and shallow minipiezometer placements (Winter et al., 1988) in littoral areas. Field analyses included measurements of pH, temperature, dissolved oxygen, and alkalinity. Laboratory analyses included major ions, selected trace elements, and 13C of dissolved inorganic carbon (13CIC). Analyses of 87Sr/86Sr were performed on a selected subset of lake and groundwater samples. These data are the basis for solute and isotope balance analyses of lake source composition and lake/groundwater fluxes, as well as equilibrium modeling of mineral authigenesis.

Water column measurements were collected in situ using a Hydrolab multisensor probe calibrated daily for pH, specific conductance, and dissolved oxygen. Lake water samples were collected using either a Van Dorn sampling bottle or a peristaltic sampling pump, and acid-washed Tygon tubing. Groundwater samples were obtained from minipiezometer installations by peristaltic pumping, following purging to "develop" the screened minipiezometer point. Following discharge of one or more caving volumes of water, production wells were sampled at the wellhead or at the most upstream available discharge point. Spring waters were directly sampled from the most upgradient point of discharge.

Samples for ionic analyses were passed through 0.45 μm membrane filters. Samples for cation analyses were stabilized with high-purity HNO3 or HCl (pH <2) in acid-washed Nalgene bottles. Samples for analysis of 13CIC were immediately crimp-sealed in dark glass bottles with Teflon septa. All water samples were ice-packed or refrigerated until analysis.

Cation analyses were performed by inductively coupled plasma mass spectroscopy (ICP-MS; Elmer/Sciex Elan 5000 and Thermo Elemental VG instruments) with precision of 2% or better. Anions were analyzed by ion chromatography on a Dionex instrument calibrated daily to five standard solutions per ion.

Analyses of 13CIC (as CO2 gas) were conducted on one of two instruments: a Finnigan-MAT Delta E multicollector, dual inlet mass spectrometer, or a Finnigan-MAT 252, both with analytical precision of 0.2‰. CO2 gas generation from sample waters was by direct acidification with 10% anhydrous H2PO4 (Graber and Aharon, 1991). Concentrations of dissolved CO2 were measured by an automated VG54 sector multicollector thermal ionization mass spectrometer in dynamic mode. Mass dependent fractionation was corrected assuming a 86Sr/88Sr of 0.1194. Strontium isotope ratios are reported relative to SRM-987 standard value of 0.71025.

We evaluated carbonate mineral saturation states and mixing behavior of water using the extended Debye-Hückel equations as implemented by the Geochemist’s Workbench software package (Bethke, 2002). Ionic strength of Evans Lake water (~2 mol) approaches but does not presently exceed the limits of usefulness for the extended Debye-Hückel model (Langmuir, 1997). Input parameters include field measurements of pH and temperature and laboratory measurements of ion concentrations. Inorganic carbon species were determined from field alkalinity titrations and from calibrated gas pressures generated during inorganic carbon extractions for 13CIC, distributed according to field measurements of pH and equilibrium constants for dissolved CO2. Samples with charge-balance errors exceeding an absolute value of 10% are excluded from mass balance analyses. Dissolved CO2 is calculated from the activity of H2CO3 and the temperature-dependent equilibrium constant for the dissolution of CO2 in water (Langmuir, 1997). Mixing calculations first equilibrate averaged groundwater compositions to lake pCO2 conditions, then progressively titrate groundwater into lake water in the presence of CaCO3 while tracking changes in solute inventory and mineral production.

Steady state lake mass balance estimates are keyed to Cl concentration of lakes and inflowing groundwaters after the method of Donovan (1994). Chloride is assumed to behave conservatively. Solute fluxes are calculated as groundwater influx, groundwater outflow, and a "reaction flux" or source/sink term (Table 2). Here the reaction flux represents the sum of multiple processes including the sequestering of authigenic minerals in lake sediment and loss of gas phases to the atmosphere.

3.4.3. Climatic history

We used the regionalized Palmer Drought Severity Index (PDSI) reconstruction of Cook et al. (1999) for a hydroclimatic metric. The PDSI uses a rule-based water balance model of surface water exchange to define a dimensionless wetness index reflecting the duration and intensity of departures from regional mean conditions (Alley, 1984). While the PDSI has various limitations (Alley, 1984; Alley, 1985; Keyantash and Dracup, 2002), the index integrates parameters that reflect availability of water moving through the vadose zone to the water table. This reconstruction of 20th century PDSI integrates climatic data from several nearby stations centered on the Ovando Valley, mitigating problems of data completeness in the Ovando climate station record.

3.4.4. Data reduction

Time series of ACF and PDSI are both represented as departures from a mean state, detrended by application of a linear fit to the raw data. Jones Lake underwent an abrupt offset in carbonate flux related to water management changes affecting recharge rates. Therefore, these data were detrended in two segments, before and after the early 20th century disturbance. Mean values and standard deviations for the detrended data sets were used to normalize scalar values, yielding time series of serial, noncumulative departures from mean values, expressed in terms of standard deviations (Z scores).

4. RESULTS

4.1. Limnology and Lake Water Column Structure

Evans and Jones lakes display strong seasonality in thermal and chemical structure, summarized for the yr 1999 to 2001 in the electronic annex (EA1). By early summer, both lakes display strong water column stratification. Near-complete consumption of dissolved oxygen by microbial respiration below the thermocline produces reducing hypolimnetic conditions. Epilimnetic waters of both lakes remain oxic. Hypolimnetic CO2 production through organic matter mineralization results in pH depression; pH in Jones Lake may drop to ~6.6 under stratified conditions, while Evans Lake water column pH gen-
Evaporation acting on water bodies subject to contrasting hydrogeologic controls produces a wide diversity of lake and wetland salinity in the Ovando area. Lake concentrations range from <2.5 mmol to ~1000 mmol total dissolved solids (TDS). Due to carbonate mineral precipitation, concentrated water bodies evolve along an alkaline, Ca-depleted pathway leading from dilute Ca-HCO₃ groundwater to brackish Na-SO₄ lake compositions (Fig. 3). Evans and Jones lakes show contrasting degrees of evolution from similar groundwater inflow compositions (Fig. 4). TDS of Evans Lake exceeds that of Jones Lake by a factor of 40 to 50. Accompanying the contrasting salinity of the two lakes is a systematic contrast in ionic composition consistent with trends seen in numerous lakes and ponds across the Ovando Valley. Higher salinities correlate with high values of SO₄²⁻(HCO₃⁻ + CO₃²⁻) and Mg:Ca and high ratios of Na and K to Ca and Mg.

This trend is explained by compositional movement along the chemical pathway IIIA of Hardie and Eugster (1970), accompanying CaCO₃ precipitation from initial solutions where molar HCO₃ moderately exceeds Ca²⁺. Initial precipitation of CaCO₃ occurs in response to CO₂ loss from inflowing supersaturated groundwater and photosynthetic uptake of CO₂. As evaporative concentration proceeds, increasing HCO₃⁻ concentrations drive Ca²⁺ downward, shifting cation dominance toward Mg²⁺, Na⁺, and K⁺. Ca removal by carbonate mineral formation prevents these waters from reaching saturation with gypsum, so SO₄²⁻ present at low concentrations in source waters, becomes the dominant anion at high lake concentrations (Fig. 4; EA2). Where SO₄²⁻ concentrations are high, evidence of microbial sulfate reduction (H₂S production in sediments and hypolimnia) becomes prominent. Widely varying lake residence time produces the broad distribution of lake salinity and ionic dominance shown.

Results of ⁸⁷Sr/⁸⁶Sr and Sr analyses show distinct compositions for groundwater from Quaternary sediments (⁸⁷Sr/⁸⁶Sr >0.72) and from Tertiary wells (⁸⁷Sr/⁸⁶Sr <0.71). Evans Lake ⁸⁷Sr/⁸⁶Sr (0.7189) is intermediate between Quaternary and Tertiary groundwater compositions, indicating mixing of low-⁸⁷Sr/⁸⁶Sr Tertiary water with the more apparent Quaternary groundwater inflow to the lake. We believe the Cone well (EA2) represents the most probable low-⁸⁷Sr/⁸⁶Sr end member
for mixed inflow to Evans Lake. Two-component mixing curves calculated according to Faure (1986) suggest 48% of Evans Lake groundwater inflow may be represented by the Cone well composition. Figure 5 summarizes our interpretation of lake inflow mixing based on the 87Sr/86Sr and Sr data.

4.3. Sedimentology and Authigenic Carbonate Flux

4.3.1. Evans Lake

Lead-210 activity in the Evans Lake core decreases monotonically down-core to reach a supported activity of 0.3205 pCi/g at a depth of 44 cm below the sediment/water interface. One-sigma errors are ±3 to 6 yr in the late 19th and early 20th centuries. The constant rate of supply (CRS) model fitted to these data yields dry-mass sedimentation rates from ~0.01 to 0.03 g/cm²/yr. The resulting age-depth model is presented in Figure 6; activity data, age, and calculated sedimentation rates are found in Table 3.

Sediments of the Evans Lake core consist of fine-grained, laminated, aragonitic mud and aragonite ooze (sensu Schnurrenberger et al., 2003). Authigenic aragonite occurs as fine (2–5 μm) subhedral, elongated prisms, needles, and rice-shaped grains. Subordinate calcite occurs as short prisms and spheroids, rarely as “dumbbells” and radial agglomerations.

There are two readily recognized lithostratigraphic units within the Evans Lake core (Fig. 6). The upper 32 cm (unit 1) is laminated, dark brown aragonite mud with total organic carbon (TOC) of 12 to 25% and quartz (detrital) between 15 and 40% of mineral mass. Underlying this unit is 70 cm of laminated aragonite mud and aragonitic algal ooze speckled with Fe-sulfide agglomerations 0.5 to 5 mm in dimension (unit 2); TOC ranges from 15 to >30%, and quartz is typically <15% of mineral mass. Freshly exposed core surfaces are black and smell strongly of H₂S.

Figure 7 shows variations in carbon (TOC and TIC) and mineralogy of the Evans Lake core. Lithostratigraphic units 1 and 2 show contrasts in sediment composition that correlate with the advent of agricultural activities. The upward transition to unit 1 (32 cm; ca. AD 1895) is marked by a decrease in % TOC and % TIC, a moderate increase in detrital mineralogy (quartz/feldspars), and commensurate dilution of authigenic aragonite.

4.3.2. Jones Lake

Lead-210 activity in the Jones Lake core decreases systematically down-core to reach a supported activity of 0.3256 pCi/g at a depth of 69 cm. Calculated dry-mass sedimentation rates range from ~0.023 to 0.074 g/cm²/yr (Table 3).

Sediments of the Jones Lake core comprise a sequence of fine-grained, banded calcite mud, calcareous silt, and diatom ooze. Authigenic calcite occurs primarily as euhedral prisms, rhombs, and spheroids up to 25 μm in dimension and secondarily as equant, subhedral, and anhedral grains less than 5 μm in dimension. As with Evans Lake, we recognize two lithostratigraphic units (Fig. 8). The upper 45 cm (unit 1) is a dark...
brown, faintly laminated calcareous diatom ooze with TIC of ~0.6 to 2%. Underlying unit 1 are ~45 cm of dark brown to grayish brown calcite mud and calcareous silt, banded at a scale of 50 to 20 mm and with 3 to 5% TIC (unit 2). Unit 2 is punctuated with occasional centimeter-scale diatom oozes dominated by *Asterionella* frustules.

Compared to Evans Lake, Jones Lake sediments show similar but stronger contrasts between lithostratigraphic units. The upward transition from unit 2 to unit 1 entails an increase in % TOC and a transient increase in detrital mineralogy. More intensive agricultural land use resulted in a more pronounced sedimentological imprint of Euro-American settlement than at Evans Lake.

4.3.3. Authigenic fluxes and climate

Figure 9 shows the relationship between departures of ACF and PDSI for the 20th century in Evans and Jones lakes. Within the error of the Evans Lake 210Pb chronology, all ACF departures with magnitude exceeding 0.5 standard deviations of the mean correspond temporally to PDSI departures. Consistent with the concept of cation-supply limitation of ACF, enhanced land surface moisture corresponds to positive anomalies in the flux of authigenic aragonite. Drought corresponds to decreased authigenic flux. Figure 9a shows only a moderately strong correlation between the magnitude of climatic and sediment-flux anomalies ($r^2 = 0.49$), likely reflecting the influence on recharge rates of variables not incorporated into the PDSI.

The Jones Lake record indicates a weaker relationship between calcite sediment flux and PDSI anomalies (Fig. 9b). Broad features of the PDSI curve before 1980 are reflected in the ACF departure record. Sensitivity is low, however, and over the last 20 yr of the record, PDSI and carbonate flux anomalies appear to correlate negatively, contrary to the groundwater flux model.

4.4. Dissolved CO₂ and δ¹³C of Inorganic Carbon

Apparent partial pressures of CO₂ calculated for Ovando lakes and groundwaters are summarized in Figure 10. Apparent pCO₂ is normalized with respect to atmospheric CO₂ pressure and plotted against δ¹³C of DIC. Jones Lake and Evans Lake minipiezometer samples show largely overlapping fields. Apparent pCO₂ is one to two orders of magnitude above atmospheric; low δ¹³C reflects vegetative sources of groundwater DIC (Fritz et al., 1978; Wachinew and Rozanski, 1997). Naturally discharging shallow groundwater from a perennial spring also falls within the field defined by minipiezometer data. Wells drawing water from deeper
in the groundwater flow system define a similar field, with one high-13C outlier likely due to nonstandard sampling procedures that allowed degassing.

Evans Lake data from 1 m water depth describe a narrowly defined field in pCO_2/13C$_{DIC}$ space, with apparent pCO_2 two to four times atmospheric, and 13C$_{DIC}$ compositions around +1.8 (± 0.8) %. Near-bottom samples range from the 1-m field up to 25 times atmospheric pCO_2, 13C$_{DIC}$ declines with increasing pCO_2 to near -5‰. Jones Lake samples straddle atmospheric equilibrium in pCO_2, with summer conditions frequently below atmospheric partial pressure. 13C$_{DIC}$ ranges from -6 to -2‰ but shows no clear correlation to pCO_2. Deepwater (11 m) samples exceed atmospheric pCO_2 by one to two orders of magnitude and display increasing 13C$_{DIC}$ values (-6 to -1‰) with increasing pCO_2.

Depth profiles of apparent pCO_2, 13C$_{DIC}$, and DIC concentration lend additional detail to the picture of lake CO$_2$ under different seasonal conditions. Freshwater Jones Lake showed a two order of magnitude gradient in pCO_2 with depth during strong thermal stratification in August 2000 (Fig. 11a). 13C$_{DIC}$ showed a distinct midwater minimum, with 13C values increasing down the water column by ~2‰ to the sediment-water interface. DIC was near 1.75 mmol/L in epilimnetic water, increasing downward by a factor of ~2 through the hypolimnion. Under the more nearly mixed, late-winter conditions of March 2001, shallow pCO_2 is enhanced more than tenfold relative to August 2000. “Deep” pCO_2 is reduced, and the range in 13C$_{DIC}$, with water depth is expanded by 3.4‰ through both lower shallow water values and higher values near the sediment interface. DIC concentrations near 3 mmol/L in the upper 6 m increased downward to ~5.5 mmol/L near the sediment interface.

Evans Lake pCO_2 profiles (expanded in Fig. 11b) are comparatively subdued; the stratified conditions of August 2000 resulted in only a twofold range in apparent pCO_2 with maximum near-sediment values 2.5 times greater than atmospheric. Under the nearly homogenous winter water column conditions of March 2001, apparent pCO_2 showed a low-amplitude maximum in near-surface waters. 13C$_{DIC}$ declined with depth under both summer and winter conditions, with a broader range under stratified conditions. Under summer stratification, epilimnetic DIC concentrations were near 29 mmol/L, increasing downward only 15% to near 33 mmol/L. Seasonal DIC change was also proportionately small. Winter concentrations near 31.5 mmol/L in the upper water column increased by ~5% near the sediment interface.

4.5. Carbonate Mineral Equilibria

Time series of mineral equilibria show Evans Lake in a consistent state of moderate supersaturation with CaCO$_3$ phases (Fig. 12a). Magnesite exhibits a higher degree of super-
saturation; temperature dependence of hydromagnesite equilibrium results in widely varying saturation state. No authigenic Mg-carbonate minerals have been identified in Evans Lake sediment, although dilution by the dominant CaCO₃ phases may mask subordinate occurrences of other authigenic minerals. Gypsum and all other sulfate minerals remain far below

<table>
<thead>
<tr>
<th>Mean depth cm</th>
<th>Unsupported ²¹⁰Pb activity pCi/gm</th>
<th>Cumulative dry mass (g/cm²)</th>
<th>Calendar yr</th>
<th>Sed acc rate (g/cm²/yr)</th>
<th>Error of age</th>
<th>Error of sed rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evans Lake ²¹⁰Pb data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8.0693</td>
<td>0.0474</td>
<td>1995.9</td>
<td>0.0291</td>
<td>1.71</td>
<td>0.00148</td>
</tr>
<tr>
<td>3</td>
<td>9.5087</td>
<td>0.172</td>
<td>1993.6</td>
<td>0.0252</td>
<td>1.77</td>
<td>0.0023</td>
</tr>
<tr>
<td>5</td>
<td>8.1128</td>
<td>0.3381</td>
<td>1982.2</td>
<td>0.0198</td>
<td>2.18</td>
<td>0.00121</td>
</tr>
<tr>
<td>7</td>
<td>7.9766</td>
<td>0.5198</td>
<td>1970.7</td>
<td>0.0145</td>
<td>2.87</td>
<td>0.00112</td>
</tr>
<tr>
<td>9</td>
<td>3.9068</td>
<td>0.7229</td>
<td>1959.9</td>
<td>0.0207</td>
<td>2.85</td>
<td>0.00117</td>
</tr>
<tr>
<td>11</td>
<td>1955.1</td>
<td>0.0222</td>
<td>3.02</td>
<td>0.00488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2.4774</td>
<td>0.9382</td>
<td>1950.6</td>
<td>0.0242</td>
<td>3.41</td>
<td>0.00238</td>
</tr>
<tr>
<td>23</td>
<td>24.9316</td>
<td>0.0976</td>
<td>1993.2</td>
<td>0.0227</td>
<td>1.05</td>
<td>0.00086</td>
</tr>
<tr>
<td>25</td>
<td>16.7442</td>
<td>0.1668</td>
<td>1990.5</td>
<td>0.0293</td>
<td>1.01</td>
<td>0.00097</td>
</tr>
<tr>
<td>27</td>
<td>14.3667</td>
<td>0.3182</td>
<td>1985.5</td>
<td>0.0305</td>
<td>1.09</td>
<td>0.00121</td>
</tr>
<tr>
<td>29</td>
<td>10.2606</td>
<td>0.541</td>
<td>1978.9</td>
<td>0.0349</td>
<td>1.08</td>
<td>0.00103</td>
</tr>
<tr>
<td>31</td>
<td>1975.6</td>
<td>0.341</td>
<td>1.11</td>
<td>0.00286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>8.7298</td>
<td>0.7652</td>
<td>1972.3</td>
<td>0.0333</td>
<td>1.17</td>
<td>0.00143</td>
</tr>
<tr>
<td>35</td>
<td>2.2383</td>
<td>1.9817</td>
<td>1951.9</td>
<td>0.0694</td>
<td>1.06</td>
<td>0.00222</td>
</tr>
<tr>
<td>37</td>
<td>1.9907</td>
<td>2.5399</td>
<td>1943.9</td>
<td>0.0602</td>
<td>1.22</td>
<td>0.00233</td>
</tr>
<tr>
<td>39</td>
<td>1.7709</td>
<td>3.136</td>
<td>1931.3</td>
<td>0.0481</td>
<td>1.51</td>
<td>0.00225</td>
</tr>
<tr>
<td>Jones Lake ²¹⁰Pb data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>24.9316</td>
<td>0.0976</td>
<td>1993.2</td>
<td>0.0227</td>
<td>1.05</td>
<td>0.00086</td>
</tr>
<tr>
<td>3</td>
<td>16.7442</td>
<td>0.1668</td>
<td>1990.5</td>
<td>0.0293</td>
<td>1.01</td>
<td>0.00097</td>
</tr>
<tr>
<td>5</td>
<td>14.3667</td>
<td>0.3182</td>
<td>1985.5</td>
<td>0.0305</td>
<td>1.09</td>
<td>0.00121</td>
</tr>
<tr>
<td>7</td>
<td>10.2606</td>
<td>0.541</td>
<td>1978.9</td>
<td>0.0349</td>
<td>1.08</td>
<td>0.00103</td>
</tr>
<tr>
<td>9</td>
<td>1975.6</td>
<td>0.341</td>
<td>1.11</td>
<td>0.00286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8.7298</td>
<td>0.7652</td>
<td>1972.3</td>
<td>0.0333</td>
<td>1.17</td>
<td>0.00143</td>
</tr>
<tr>
<td>13</td>
<td>2.2383</td>
<td>1.9817</td>
<td>1951.9</td>
<td>0.0694</td>
<td>1.06</td>
<td>0.00222</td>
</tr>
<tr>
<td>15</td>
<td>1.9907</td>
<td>2.5399</td>
<td>1943.9</td>
<td>0.0602</td>
<td>1.22</td>
<td>0.00233</td>
</tr>
<tr>
<td>17</td>
<td>1.7709</td>
<td>3.136</td>
<td>1931.3</td>
<td>0.0481</td>
<td>1.51</td>
<td>0.00225</td>
</tr>
<tr>
<td>19</td>
<td>1.5865</td>
<td>3.4394</td>
<td>1924.4</td>
<td>0.0437</td>
<td>1.77</td>
<td>0.00268</td>
</tr>
<tr>
<td>21</td>
<td>2.2077</td>
<td>3.7449</td>
<td>1911.2</td>
<td>0.0231</td>
<td>2.52</td>
<td>0.00151</td>
</tr>
<tr>
<td>23</td>
<td>1.0176</td>
<td>4.1014</td>
<td>1900.9</td>
<td>0.0346</td>
<td>3.36</td>
<td>0.00339</td>
</tr>
<tr>
<td>25</td>
<td>0.435</td>
<td>4.5089</td>
<td>1894.3</td>
<td>0.0624</td>
<td>4.05</td>
<td>0.00809</td>
</tr>
<tr>
<td>27</td>
<td>0.3041</td>
<td>5.3054</td>
<td>1880.9</td>
<td>0.0588</td>
<td>5.79</td>
<td>0.01089</td>
</tr>
<tr>
<td>29</td>
<td>0.2239</td>
<td>5.9753</td>
<td>1868.7</td>
<td>0.0537</td>
<td>6.92</td>
<td>0.01423</td>
</tr>
<tr>
<td>31</td>
<td>0.1603</td>
<td>6.5559</td>
<td>1857.7</td>
<td>0.0529</td>
<td>11.45</td>
<td>0.01925</td>
</tr>
</tbody>
</table>

Open symbols are values interpolated according to the constant rate of supply (CRS) model. Supported ²¹⁰Pb is calculated as .32 pCi/g in both cores. 1-σ age errors were calculated by first-order error analysis of counting uncertainty (Binford, 1990).
Fig. 7. Carbon stratigraphy and mineralogy of the Evans Lake short core.

Fig. 8. Carbon stratigraphy and mineralogy of the Jones Lake short core.
saturation. Lowest carbonate mineral saturation index (SI) values occur in near-bottom waters during pronounced stratification of the lake water column, as a result of CO$_2$ accumulation and pH depression below the chemocline. With the exception of a single analysis, the water column remains above saturation with aragonite (and calcite) at both 1 m and near-bottom depths. Jones Lake displays mineral saturation patterns more characteristic of dilute temperate lakes (Dean and Megard, 1993). CaCO$_3$ phases exceed saturation mainly during warm water conditions of inferred high-algal productivity and CO$_2$ drawdown (Fig. 12b). Magnesium carbonate phases remain mostly below saturation. Near-bottom waters are typically undersaturated with CaCO$_3$ phases, both during summer stratification and under winter ice cover, when the entire water column may achieve negative SI values.

5. DISCUSSION

We hypothesized a link between climate and carbonate authigenesis involving variations in areally distributed groundwater recharge. Primary geologic controls over recharge include topography, hydraulic characteristics of shallow geologic materials, and thickness of the vadose zone (Freeze and Cherry, 1979; Winter, 1983; Winter, 1999). Other important landscape controls include vegetation type and condition, timing of precipitation and snowmelt, soil and subsoil temperature, and antecedent moisture conditions (Sophocleous and Perry, 1985; Rosenberry and Winter, 1997). Mechanisms of aquifer recharge and lake-aquifer exchange within glaciated landscapes have been analyzed in theoretical, field, and numerical studies (e.g., Toth, 1962; Meyboom, 1967; Winter, 1983; Winter and Pfannkuch, 1984; LaBaugh et al., 1987; Krabbenhoft et al., 1990a; Krabbenhoft et al., 1990b; Woo and Roswell, 1993; Hayashi et al., 1998a; Hayashi et al., 1998b). Hummocky terrain generates complex groundwater flow patterns, commonly highly sensitive to recharge rate and timing. Recharge transience in such settings drives dynamic fluid, solute, and isotope fluxes between groundwater and lakes. A single hydroclimatic index cannot fully capture such a complex set of interactions. However, the PDSI water-balance model is sensitive to fundamental conditions influencing aquifer recharge (Alley, 1984; Alley, 1985), and provides a basis for a tractable test of our hypothesis.

Fig. 9. Reconstructed Palmer Drought Severity Index (PDSI) and authigenic carbonate flux (ACF) for Evans Lake (a) and Jones Lake (b). PDSI and ACF are expressed as departures from detrended mean values for the period of record, normalized to standard deviations of the PDSI and ACF means.
Figure 9 shows the relative strength of the climate-ACF link in the two lakes. Evans Lake shows a stronger correlation than Jones Lake. Mass balance analysis of recent (1997–2001) solute partitioning helps explain the sensitivity of the climate/authigenesis link in Evans Lake (Table 2; Fig. 13). We used lake and source groundwater compositions to calculate the distribution of inflowing dissolved Ca between (1) dissolved outflow in groundwater, and (2) precipitation and sedimentation as carbonate minerals. Using a weighted mean groundwater composition based on 87Sr/86Sr mixing analysis (Figure 5; EA-2), we calculate that more than 99% of the Ca influx is reacted within the lake basin as authigenic CaCO$_3$. High alkalinity and a low rate of groundwater outflow combine to ensure that calcium export via the groundwater system is a small fraction of dissolved Ca inflow. Hence, the ACF records changes in the rate of dissolved Ca delivery from the groundwater system with considerable faithfulness.

Similar mass balance analysis explains the weaker relation between Jones Lake ACF and climate. Jones Lake water retains between 0.4 and 1.2 mmol/L Ca in solution, in contrast with Evans Lake where observed Ca concentrations are generally below 0.15 mmol/L (EA2). As a result, ~35% of calculated modern Jones Lake Ca influx is lost from the lake in groundwater outflow. As shown by pCO$_2$ and δ^{13}C$_{DIC}$ relationships (Fig. 9), some of this Ca is initially precipitated as CaCO$_3$ under summer-elevated pH conditions but is redissolved in the hypolimnion and subsequently lost to groundwater. Sensitivity of authigenesis to changes in fluid influx is thus inherently low.

In addition, hydrologic manipulation within the Jones Lake catchment area in recent decades partially decoupled groundwater recharge rate from climate. To raise lake levels during dry yr, surface water is imported via ditch to a nearby kettle, resulting in mounding of the potentiometric surface and enhanced local groundwater fluxes. This water management strategy probably results in the contrary relationship between PDSI and mineral flux shown in the later part of the Jones Lake record.

Equilibrium geochemical modeling of simplified lake water/groundwater relationships further highlights differences in the response of carbonate flux to climate in these two lakes. We examined the distribution of groundwater-delivered Ca between aqueous and mineral phases under different mixing ratios of groundwater to lake water, using carbonate equilibria, measured aqueous geochemistry, and very simplified mineral suites. This analysis entailed the equilibration of groundwater compositions to lake pCO$_2$, followed by mixing with lake compositions in the presence of calcite in Jones Lake and aragonite in Evans Lake. Precipitation of Mg-carbonate phases...
was suppressed in these experiments, as there is no lithological evidence for their occurrence in the cores. Unfavorable kinetics related to hydration strength of Mg\(^{2+}\) ions and surface charge effects typically suppress precipitation of Mg carbonates up to considerably higher ionic strength than Evans Lake presently displays (Sayles and Fyfe, 1973; Chou et al., 1989; Queralt et al., 1997; Last and De Deckker, 1990). Calcium was tracked as the fraction of groundwater-supplied Ca remaining in solution at equilibrium with different mixing ratios. Averaged groundwater compositions were calculated through simple ion-by-ion averaging of minipiezometer samples from Jones Lake and \(^{87}\)Sr/\(^{86}\)Sr-based weighting of minipiezometer samples and the Cone well for Evans Lake. When the modeled CO\(_2\) equilibration paths of these average compositions are compared to measured groundwater compositions, they follow similar CaCO\(_3\) precipitation pathways, supporting use of the averaged inflow compositions assumed in this analysis.

Analyses of lake-groundwater mass balance indicate contrasting allocation of solute influx between water column (eventually outflow) and sediment. Likewise, simulated mixing and equilibration of these groundwater compositions with lake water chemistry leads to differing predictions of Ca fate for the two lakes. We evaluated the mixing and equilibration of averaged groundwater inflow compositions under both “atmospherically open” (summertime lake composition, low pCO\(_2\)) and “atmospherically closed” (wintertime lake composition, high pCO\(_2\)) assumptions. In Evans Lake, both atmospherically open and atmospherically closed equilibrations of mixed compositions predict most Ca contributed by groundwater inflow should go into aragonite formation (Fig. 14a). Lake water alkalinity is high enough to produce aragonite saturation in mixed compositions at all observed lake pCO\(_2\). This suggests that carbonate authigenesis in Evans Lake may be a year-round process. Active hypolimnetic sulfur cycling (evidenced by H\(_2\)S production and high concentrations of purple sulfur bacteria in the water column) strongly suggests that sulfate reduction contributes HCO\(_3\) to lake water.

Fig. 11. Lake pCO\(_2\), \(\delta^{13}\)C\(_{\text{DIC}}\), and DIC profiles under winter and summer conditions: (a) Evans Lake and Jones Lake profiles; (b) Evans Lake data, scale expanded.
through organic matter mineralization (Fenchel et al., 1998). This alkalinity production may contribute to aragonite precipitation. Even under winter ice cover when pCO$_2$ tends to be at its highest and pH at its lowest, more than 90% of calculated Ca inflow at annualized mixing ratios near those inferred (groundwater:lake $\ll 1$) would be precipitated as aragonite if exact thermodynamic equilibrium (SI$_{arag}$ = 0) was maintained. Even at much higher groundwater inflow rates (groundwater/lake ~ 1), calculated Ca precipitation is \sim90% of inflow. For all probable mixtures, high rates of Ca removal are still expected despite the effects on ion activities of lake dilution by groundwater. Under more atmospherically open summertime conditions, an even larger fraction of inflowing Ca is expected to precipitate as CaCO$_3$, according to equilibrium calculations. These results support the interpretation, based on the PDSI-ACF comparison, of close coupling between authigenic carbonate flux and climate in this lake. An implication is that annual variation in ACF may be driven more by seasonality of groundwater inflow and the activity of the sulfate reduction cycle than by seasonality in primary production.

In Jones Lake, mixing under atmospherically open lake...
conditions result in precipitation of ~80 to 90% of dissolved Ca as calcite, but under atmospherically closed lake conditions undersaturation of calcite results (Fig. 14b). This suggests a seasonally sensitive summertime formation process for authigenic calcite promoted by photosynthetic CO₂ depletion and is consistent with the observed weak correlation of ACF to PDSI observed for this lake.

Intralake cycling of carbon as inferred from δ¹³C_DIC supports our concept of the contrasting CaCO₃ fluxes in the two lakes. Groundwater inflow compositions between ~10 and ~14‰ VPDB characterize both lakes and reflect mixing of soil-carbon derived DIC, with DIC from dissolution of carbonate minerals encountered along groundwater flowpaths. Atmospheric equilibration and photosynthetic fractionation produce more positive δ¹³C values in both lakes. In Evans Lake, water column profiles and paired 1 m and 7 m samples show the DIC near the sediment interface to be always more negative in δ¹³C than the rest of the water column. This δ¹³C gradient is consistent with remineralized organic matter low in δ¹³C providing a flux of CO₂ from near the sediment-water interface, while authigenic carbonates settling through the water column are preserved (e.g., Wachinew and Rozanski, 1997). Further support for this idea is provided by Evans Lake mineral equilibria showing hypolimnetic waters at or above aragonite saturation under almost all sampled conditions.

In Jones Lake, the DIC flux from the sediment has high δ¹³C relative to water column values. Enhanced δ¹³C_DIC at depth suggests a significant DIC flux from redissolution of authigenic calcite. As in Evans Lake, δ¹³C_DIC relationships are consistent with mineral equilibria that show near-bottom waters in Jones Lake to be undersaturated under most conditions.

The calculation of ACF is potentially subject to error through inclusion of detrital calcite in the measured TIC. Several lines of evidence show this error to be small or negligible for these sediments. In Evans Lake, most of the CaCO₃ present is aragonite, for which there is no detrital source in this area. Moreover, the abundance of calcite in the Evans Lake core does not covary with quartz, which is present as a detrital phase. This indicates that very little detrital calcite is delivered from the landscape to Evans Lake, or by implication, to Jones Lake since the lithologies of glacial materials in the two watersheds are similar. Finally, petrographic examination of smear slides of Jones Lake unit I reveals abundant calcite of apparent authigenic origin (monocrystalline subhedral and euhedral forms) and few detrital calcite grains.

Evans Lake ACF is closely coupled to recent climate because lake DIC is high (limiting dissolved Ca activity), lake outflow is small, noncarbonate Ca-bearing mineral phases are unimportant to mass balance, and preservation of authigenic carbonate minerals is complete or nearly so. We suggest these conditions apply to Evans Lake over a rather wide climatic range. Conditions more strongly evaporative than the 20th century are unlikely to decouple ACF from climate until lake salinities much higher than the present are reached. This is because the TIC/Ca of groundwater inflow, governed by calcite dissolution and soil respiration, is likely to maintain a molar TIC excess as observed today, resulting in continued CaCO₃ precipitation and Ca depletion from lake waters.

Sustained conditions much less evaporative than the 20th century may weaken the Evans Lake ACF link with climate by increasing Ca export. A shift in fluid balance toward proportionally greater groundwater outflow, possible under sustained conditions of higher inflow and/or lower evaporation, will result in proportionally greater export of solutes. Evans Lake would begin to spill after a sixfold increase from its current volume. Surface water outflow would likely result in an abrupt decrease in ACF recharge sensitivity. Lowering of lake DIC through reduced evaporative forcing or interruption of the presently active sulfate reduction cycle may also result in more Ca remaining in solution for possible export in groundwater outflow. While the sensitivity of Evans Lake ACF to such large-amplitude change is uncertain, we note that the 20th century record encompasses one highstand (1908–1915) during which lake volume exceeded the highest volume observed during our study by a factor of ~2.6, indicating climate-sensitive response in ACF persists over a rather broad range in lake conditions.

Correlation of the 20th century ACF record to climate rests on a quasi-continuous ²¹⁰Pb chronology and ²¹⁰Pb derived sedimentation rates. The ²¹⁰Pb chronology serves to demonstrate the mechanism linking climate variation and carbonate mineral production in groundwater-controlled lakes. Coarser chronological control, as is typical of longer records, will allow
resolution of correspondingly long-term average changes in ACF and inferred groundwater flux, while a highly resolved chronology (e.g., a varve count) will support interpretation of hydrologic change at annual or near-annual scales.

6. CONCLUSIONS

In this study, we used 20th century sediment mineralogy and carbon chemistry to calculate carbonate mass accumulation rates in two groundwater-dominated lakes. Carbonate mass accumulation rates were then used to test for a relationship between authigenic carbonate flux (ACF) and PDSI, a proxy for areally distributed groundwater recharge. ACF rates correlate with climate, with enhanced carbonate mineral production corresponding to wet climatic periods, as measured by PDSI reconstruction. Correspondence between ACF and PDSI is much more pronounced in alkaline and saline lakes. The alkaline lake in our study remains saturated with CaCO3 during atmospheric stratification and under winter ice cover. The alkaline lake in our study becomes undersaturated during atmospherically closed conditions, redissolving Ca carbonate and diminishing the sensitivity of ACF to Ca inflow rates. pCO2 and δ13C composition of DIC in these lakes and their source groundwaters supports the solubility mechanism we propose to account for the contrast in ACF history between lakes. Mineral equilibria, pCO2, and δ13C relationships underscore the importance of year-round mineral saturation for the application of ACF as a paleorecharge estimator. Sulfate reduction contributes to the process through mineralization of organic matter to HCO3-. In appropriate paleolimnological settings, the mass flux rate of authigenic CaCO3, limited by cation supply, is a valuable paleoclimatic proxy reflecting aquifer recharge to the groundwater catchment supplying the lake.

Acknowledgments—We wish to thank Larry Benson, Avner Ayalon, and an anonymous reviewer for careful critiques of this manuscript, which benefited in important ways from their suggestions. We also thank Eric Grimm and Dan Engstrom for critical contributions to core recovery and sediment dating. Geoff and Kathy Foote, Jim and Colleen Stone, Gary and Sharon Jacobsen, and Price, Laura, and Justin Williams provided generous access to private lands and invaluable logistical assistance in the field. The senior author’s contribution to this research was supported by the U.S. National Science Foundation through the University of Minnesota Department of Geology and Geophysics GeoFluids Program and the UM Paleorecords Research Training Group, and by the U.S. Department of Education through the UM Department of Geology and Geophysics GAANN Program. Critical support was provided by facilities and personnel of LRC LacCore facility. This is Limnological Research Center Contribution #601.

Associate editor: M. Bar-Matthews

REFERENCES

ELECTRONIC ANNEX